Учебник по электронике

Полное сопротивление цепи переменного тока

В предыдущих статьях мы узнали, что всякое сопротивление, поглощающее энергию, называется активным, а сопротивление, не поглощающее энергии, безваттным или реактивным. Кроме того, мы установили, что реактивные сопротивления делятся на два вида — индуктивные и емкостные.

Однако существуют цепи, где сопротивление не является чисто активным или чисто реактивным. То есть цепи, где вместе с активным сопротивлением включены в цепь, как емкости, так и индуктивности.

Введем понятие полного сопротивления цепи переменному току - Z, которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока

На рисунке 1 представлены варианты электрических цепей и их классификация в зависимости от того какие элементы (активные или реактивные) включены в цепь.

cepi-peremennogo-toka

Рисунок 1. Классификация цепей переменного тока.

Полное сопротивление цепи с чисто активными элементами соответствует сумме активных сопротивлений цепи и рассматривалось нами ранее. О чисто емкостном и индуктивном сопротивлении цепи мы тоже с вами говорили, и оно зависит соответственно от общей емкости и индуктивности цепи.

Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и реактивное сопротивление.

Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления.

В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми. Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б). Отсюда следует, что радиус-вектор напряжения UL (напряжение на индуктивном сопротивлении) и напряжения UR (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.

polnoe-soprotivlenie-posledovat-rl

Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью.        а) - схема цепи; б) - сдвиг фаз тока и напряжения; в) - треугольник напряжений; д) - треугольник сопротивлений.

Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис.2,а) мы произведем геометрическое сложение радиусов-векторов UL и UR. Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор UAB является гипотенузой прямоугольного треугольника.

Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.

polnoe-soprotivlenie-formula-1

По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.

Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z2) будет также равен сумме квадратов активного и индуктивного сопротивлений, т. е.

polnoe-soprotivlenie-formula-2                                      (1)

 

Извлекая квадратный корень из обеих частей этого равенства, получим,

polnoe-soprotivlenie-formula-3                                       (2)

 

 Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений

Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. е. полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе. Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.

Полное сопротивление цепи, изображенной на рис.2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°. К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи. Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.

В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.

polnoe-soprotivlenie-posledovat-rc

Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью.                                                а) - схема цепи; б) - треугольник сопротивлений.

Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.

Для данного случая:

polnoe-soprotivlenie-formula-4(3)

 

 

 В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.

polnoe-soprotivlenie-posledovat-rlc

Рисунок 4. Полное сопротивление цепи содержащей R, L и C. а) - схема цепи; б) - треугольник сопротивлений.

Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.

polnoe-soprotivlenie-formula-5                           (4)

 

 

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (XL или XC преобладает).

После того как мы по формуле (4) определили общее реактивное сопротивление цепи, определение полного сопротивления не представит затруднений. Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е.

polnoe-soprotivlenie-formula-6                                     (5)

 

 

Или

polnoe-soprotivlenie-formula-7                         (6)

 

 

 

Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.

Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.

Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.

parallelnoe-soedinenie

Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) - параллельное соединение R и L; б) - параллельное соединение R и C.

Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z

Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

polnoe-soprotivlenie-formula-8                       (7)

 

 

 

 

Приводя к общему знаменателю подкоренное выражение, получим:

polnoe-soprotivlenie-formula-9  (8)

 

 

 

 

 откуда:

polnoe-soprotivlenie-formula-10                              (9)

 

 

 

 

Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.

Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.

Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:

polnoe-soprotivlenie-formula-11                             (10)

 

 

 

 

 

 Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.

В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).

kolebatelnyj-kontur

Рисунок 6. Эквивалентная схема колебательного контура.

Формула полного сопротивления для этого случая будет:

 polnoe-soprotivlenie-formula-12                  (11)

 

 

 

 Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:

 polnoe-soprotivlenie-formula-13(12)

 

 

 В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие

 polnoe-soprotivlenie-formula-14                                    (13)

 

 

 При соблюдении этого условия полное сопротивление колебательного контура будет равно:

 polnoe-soprotivlenie-formula-15                                    (14)

 где L—индуктивность катушки в Гн;

С—емкость конденсатора в Ф;

R—активное сопротивление катушки в Ом.


ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!


Комментарии  

 
#10 Таль 09.10.2023 18:27
Правильно я понимаю что разность фаз между напряжением на индукции + резистор и током в цепи будет wL/R
Цитировать
 
 
#9 антип 07.08.2017 21:37
отличная статья! Помню когда учился в техникуме именно также просто нам препод объяснял все это. Но записи с формулами гдето затерялись.Расп ишите поподробнее все обозначения в формулах, например w это что? Количество витков катушки вроде бы?
Цитировать
 
 
#8 Имя любимое моё 22.11.2016 07:13
Хорошая статья *бись все оно трехфазным током
Цитировать
 
 
#7 Сергей9998 09.04.2016 10:45
А если нет активного сопротивления, а только индуктивное и емкостное, как считать?
Цитировать
 
 
#6 Administrator 19.01.2015 16:24
Виктор, все на самом деле просто. Формула 11 есть формула при параллельном соединении двух сопротивлений посмотреть можно здесь.
Одним сопротивлением является емкостное сопротивление конденсатора, вторым общее сопротивления последовательно го участка из активного сопротивления и индуктивного (формула 2).
Далее простая математика
Цитировать
 
 
#5 Виктор___ 19.01.2015 14:29
Странно, что здесь хвалить? Формула 11 дана от потолка. А если схема немного иная? Не понимая, как получена 11, ничего невозможно сделать.
А если в последовательно м соединении имеется параллельный участок? - Вообще хоть стреляйся.
Цитировать
 
 
#4 Administrator 13.01.2015 02:49
Марат, спасибо за замечание и за отзыв, все исправлено!
Цитировать
 
 
#3 Марат 12.01.2015 20:34
Подпись к рисунку 5 а) Параллельное соединение R и L
А в общем и целом, материал изложен изумительно просто! Спасибо автору. За один вечер повторил и освоил весь основной материал, который преподавали в течение целого СЕМЕСТРА на дисциплине Общая электротехника в университете. Сейчас читаю и удивляюсь, как все, оказывается, просто и понятно!
Цитировать
 
 
#2 Тема 09.11.2014 10:59
все понятно и четко расписано.
Цитировать
 
 
#1 Наталья 15.10.2014 05:27
:lol: :lol: :lol:Спасибо, все четко и ясно.
Цитировать
 

Добавить комментарий

Защитный код
Обновить

Видеокурс "Черчение схем в программе sPlan 7"

Kurs-splan

Если Вы хотите научиться чертить электрические схемы, создавать рисунки и иллюстрации (например при оформлении курсовых, дипломных, при публикации на сайте и т.д.) быстро и профессионально, то у меня для Вас есть отличная новость!

 

Вы можете совершенно БЕСПЛАТНО получить полноценный курс по черчению схем и созданию рисунков в программе sPlan 7.0!

Бесплатно!

 

Видеокурс "Программирование микроконтроллеров для начинающих"

mk-avr

Если Вы хотите из новичка превратиться в профессиноала, стать высококлассным, конкурентноспособным и грамотным специалистом в области самого перспективного направления микроэлектроники, тогда изучите новый видокурс по микроконтроллерам!

Уверяю такого еще нет нигде!

В результате вы научитесь с нуля не тольно разрабатывать собственные устройства, но и сопрягать с ними различную переферию!